Instructions to authors for formatting of tables and figures

The instructions below detail the key elements needed for the formatting of tables and figures to meet the editorial style of the *European Journal of Vascular & Endovascular Surgery*. It is important that authors provide all of the information included in the tables and figures shown below in order to allow the journal to correctly present their tables and figures in the journal. Please use the instructions and examples below when preparing your tables and figures for submission to EJVES.

Tables

- Design the table to fit in upright (vertical) page, no horizontal tables are allowed
- Provide the table with a self-explanatory title that enables a reader to understand the contents of the table and the origin of the presented data
- Provide every column with a header
- Do not include any statistical quantities in the table data-field, instead state such characteristic of the data in the table foot e.g. “Data are presented as n (%) or mean ± standard deviation (SD) or median (interquartile range [IQR])”. You may also provide the explanations for the numbers in column headers e.g. n (%) or mean ± SD or median (IQR).
- Do not include any units in the table data-field, provide the units after the row denominators in the first column e.g. Age – y
- Use *, †, ‡, §, ‖, ¶ signs in order to provide any specific additional information for the table foot
- List any abbreviations and their explanations in the table foot.
- If any references are included in the table, provide them also with the corresponding reference numbers.

Example:

Table 1. Baseline characteristics of patients studied for hospital dependent delay for carotid endarterectomy (CEA) for symptomatic carotid stenosis in total and divided by year of inclusion.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total n = 8620</th>
<th>Year of inclusion 2014 n = 2010</th>
<th>2015 n = 2188</th>
<th>2016 n = 2231</th>
<th>2017 n = 2191</th>
<th>p *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age – y</td>
<td>72 ± 9</td>
<td>72 ± 9</td>
<td>72 ± 9</td>
<td>72 ± 9</td>
<td>73 ± 9</td>
<td>.01</td>
</tr>
<tr>
<td>Male sex</td>
<td>6010 (70)</td>
<td>1396 (69)</td>
<td>1512 (69)</td>
<td>1558 (70)</td>
<td>1554 (70)</td>
<td>.76</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory morbidity</td>
<td>1710 (20)</td>
<td>367 (18)</td>
<td>468 (21)</td>
<td>433 (19)</td>
<td>442 (21)</td>
<td>.08</td>
</tr>
<tr>
<td>Cardiac morbidity</td>
<td>6437 (75)</td>
<td>1419 (72)</td>
<td>1640 (75)</td>
<td>1690 (76)</td>
<td>1688 (77)</td>
<td><.001</td>
</tr>
<tr>
<td>Use of oral</td>
<td>1027 (12)</td>
<td>203 (10)</td>
<td>269 (12)</td>
<td>284 (13)</td>
<td>271 (12)</td>
<td>.04</td>
</tr>
</tbody>
</table>
Anticoagulants

<table>
<thead>
<tr>
<th>Process factors</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous CEA</td>
<td>375 (4) 83 (4) 105 (5) 106 (5) 81 (4) .22</td>
</tr>
<tr>
<td>First consultation at the hospital during the weekend</td>
<td>1232 (14) 300 (14) 347 (16) 313 (14) 272 (14) .22</td>
</tr>
<tr>
<td>Referring specialist</td>
<td></td>
</tr>
<tr>
<td>Neurologist</td>
<td>7887 (93) 1812 (91) 1986 (93) 2093 (95) 1996 (92) .001</td>
</tr>
<tr>
<td>Ophthalmologist</td>
<td>395 (5) 97 (5) 100 (5) 81 (4) 117 (6)</td>
</tr>
<tr>
<td>Vascular surgeon</td>
<td>208 (2) 74 (4) 48 (2) 36 (2) 50 (2)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) or mean ± stand deviation (SD) unless stated otherwise. CEA = carotid endarterectomy.

* p value of difference between years of inclusion.

Contents of the table is based on Kuhrij LS et al. Eur J Vasc Endovasc Surg, https://doi.org/10.1016/j.ejvs.2019.05.015

Figures

General instructions

- Design the figure (including all the panels) to fit in one upright (vertical) page, no horizontal figures are allowed. Label the panels as A, B, C, etc.
- Provide the figure with a self-explanatory legend that enables a reader to understand the contents of the figure and the origin of the presented data.
- List any abbreviations and their explanations at the end of the figure legend.
- If any references are included in the figure, provide them also with the corresponding reference numbers.

Flow charts

- Use only plain 2D presentation
- For PRISMA flow diagram, use the layout also available at: http://prisma-statement.org/PRISMAStatement/FlowDiagram

Example:

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for literature search to identify randomised controlled trials on wound closure techniques in vascular surgery.
Kaplan-Meier curves

- Create descriptive titles for x and y axes
- Do not use any additional frame lines or horizontal/vertical lines behind the graphics
- Provide the curve with No. at risk –table

Example:

Figure 1. Cumulative Kaplan-Meier survival estimate with abdominal compartment syndrome after surgery for abdominal aortic aneurysm (AAA) repair depending on the main pathophysiological finding.

(Figure is originally published in Ersryd S et al. Eur J Vasc Endovasc Surg. 2019 Aug 9. doi: 10.1016/j.ejvs.2019.04.007)
Bar charts

- Include number [of patients] per group in the figure
- Do not use any additional frame lines or horizontal/vertical lines behind the graphics
- Provide figure with \(p \) values

Example

Figure 1. Interval from abdominal aortic aneurysm (AAA) repair to decompressive laparotomy depending on the (A) main pathophysiological finding and (B) treatment modality in ruptured AAA. Dots represent suspected outliers (\(\geq 1.5 \) interquartile range [IQR]) and stars represent outliers (\(\geq 3.0 \) IQR). EVAR = endovascular aneurysm repair.

(Figure is originally published in Ersryd S et al. Eur J Vasc Endovasc Surg. 2019 Aug 9. doi: 10.1016/j.ejvs.2019.04.007)
Forest plots:

Examples

Figure 1. Overall endovenous laser ablation treatment success in randomised controlled trials. Events = number of legs with successful treatment; CI = confidence interval. The vertical dotted line represents the mean proportion of all studies (92%).

(Figure is originally published in Malskat WSJ et al. Eur J Vasc Endovasc Surg. 2019 Aug;58(2):230-242.)
Figure 1. Forest plot of five studies for difference in stroke by 30 days after thoracic endovascular aneurysm repair for descending thoracic aortic aneurysm for women vs. men. OR = odds ratio; CI = confidence interval.

(Figure is originally published in Ulug P et al. Eur J Vasc Endovasc Surg. 2019 Jul 29. doi: 10.1016/j.ejvs.2019.04.022.)